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Abstract—In this paper we propose a new no-reference (NR)
/ blind sharpness metric in the autoregressive (AR) parameter
space. Our model is established via the analysis of AR model
parameters, first calculating the energy- and contrast-differences
in the locally estimated AR coefficients in a point-wise way, and
then quantifying the image sharpness with percentile pooling to
predict the overall score. In addition to the luminance domain,
we further consider the inevitable effect of color information
on visual perception to sharpness and thereby extend the above
model to the widely used YIQ color space. Validation of our
technique is conducted on the subsets with blurring artifacts
from four large-scale image databases (LIVE, TID2008, CSIQ
and TID2013). Experimental results confirm the superiority and
efficiency of our method over existing NR algorithms, state-of-
the-art blind sharpness / blurriness estimators, and classical full-
reference quality evaluators. Furthermore, the proposed metric
can be also extended to stereoscopic images based on binocular
rivalry, and attains remarkably high performance on LIVE3D-I
and LIVE3D-II databases.

Index Terms—Image sharpness / blur, image quality assessment
(IQA), no-reference (NR) / blind, autoregressive (AR) parameters,
YIQ color space, stereoscopic image, binocular rivalry

I. INTRODUCTION

NOWADAYS, the expectation of human consumers toward
enjoyment of high-quality images is constantly rising.

Owing to the limitations of bandwidth and storage media,
images however very possibly suffer some typical types of
distortions, e.g. white noise and Gaussian blur, before finally
reaching to human consumers. Classical full-reference (FR)
image quality assessment (IQA), supposing that the original
and distorted images are both entirely known, can assess
those degradation levels [1]-[6]. But the pristine image is
not available in most cases, and thus blind / no-reference
(NR) IQA metrics without access to original references are
highly desirable. For noise estimation, these years have wit-
nessed the emergence of quite a few blind algorithms [7]-
[8]. Though a large set of sharpness / blurriness measures
have been developed, their performance indices are far less
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than the ideal results. Furthermore, this type of approaches
are of many valuable applications in image processing, such
as automatic contrast enhancement [9]-[10], super-resolution
[11] and denoising [12]. Therefore, in this work we devote to
inducing a high-accuracy blind image sharpness metric.

Early attempts of sharpness / blurriness estimations mainly
concentrated on image edges. In [13], a perceptual model was
developed based on a pair of edge detectors for vertical and
horizontal directions. In [14], Wu et al. proposed a blind blur
evaluator by computing the point spread function (PSF) from
the line spread function (LSF) that is extracted from edges in
a blurred image. In [15], the authors computed the edge width
in 8×8 blocks before a measure of just-noticeable blur (JNB)
factor. Inspired by the successfulness of JNB, the cumulative
probability of detecting blur (CPDB) algorithm [16] predicts
the image sharpness by calculating the probability of blurriness
at each edge.

Over the last few years, there have also existed some blind
techniques with some level of success in assessing perceptual
sharpness. In [17], the authors combined spatial and transform-
based features to induce a hybrid approach, dubbed as spectral
and spatial sharpness (S3). Specifically, the slope of the local
magnitude spectrum and total variation is first used to create
a sharpness map, and then the scalar index of S3 is computed
as the average of the 1% highest values in that sharpness map.
Thereafter, a transform-inspired fast image sharpness (FISH)
model [18] was explored with the evaluation of log-energies in
high-frequency DWT subbands followed by a weighted mean
of the log-energies.

Very recently, Feichtenhofer et al. developed a perceptual
sharpness index (PSI) [19] by analyzing the edge slopes before
integrating an acutance measure to model the influence of local
contrast information on the perception to image sharpness. In
[20], Wang et al. analyzed the local phase coherence (LPC)
and pointed out that the phases of complex wavelet coefficients
constitute a highly predictable pattern in the scale space in the
vicinity of sharp image features, and furthermore, the LPC
structure was found to be disrupted by image blur. With this
concern, Hassen et al. designed the valid LPC-based sharpness
index (LPC-SI) [21].

Besides, several NR IQA metrics were proved effectively
in assessing image blur. The authors in [22] made use of the
recent free energy based brain theory [23] to simulate the
internal generative mechanism of the brain, and introduced
the NR free energy based quality metric (NFEQM). Distortion
Identification-based Image Verity and INtegrity Evaluation
(DIIVINE) [24], BLind Image Integrity Notator using DCT
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Statistics (BLIINDS-II) [25] and Blind/Referenceless Image
Spatial Quality Evaluator (BRISQUE) [26] came from the
natural scene statistics (NSS) model [27], working with the
feature extraction and the training of a regression module via
the support vector machine (SVM) [28]. Along this research
line, we lately designed the NFSDM [29] and NFERM [30]
by systematically integrating two effective reduced-reference
(RR)1 quality metrics in [22] and [31] to eliminate the demand
of references.

Differing from previous methods, in this paper we come up
with a new blind sharpness measure based on the analysis of
autoregressive (AR) model parameters, dubbed as AR-based
Image Sharpness Metric (ARISM). Our technique is inspired
by the free energy principle and the NFEQM model, built upon
the underlying hypothesis that image blurring increases the
resemblance of locally estimated AR parameters. Particularly,
the proposed ARISM works to separately measure the energy-
and contrast-difference of AR model coefficients at each pixel,
and then compute the image sharpness with percentile pooling
to deduce the overall quality score.

Currently, since three-dimensional (3D) imaging technology
works actively from entertainment (e.g. videos and games) to
specialized domains (e.g. education and medicine), a growing
number of image processing operations have been specifically
explored for stereoscopic images, and thereby the necessity of
stereoscopic IQA methods shows strongly evident, especially
under the NR condition. There have been many related studies
extending 2D IQA models to 3D images. In [32], the fusion of
2D quality scores of the left- and right-eye images is used to
infer the stereoscopic image quality. In [33], the degradation
of edges in the depth map is used as the 3D image quality.
In [34]-[36], the authors fused the quality measure of the
disparity map with those of left- and right-views to infer the
visual quality of stereoscopic images.

Following this research line, we further endeavor to modify
the proposed ARISM for the sharpness assessment of stereo-
scopic images, based on existing studies on binocular rivalry
[37]-[39], where it was found that for simple ideal stimuli, a
rising contrast advances the predominance of one view against
the other. We reasonably suppose that the contrast increases
with the difference of AR parameters. Thus, a 3D sharpness
measure can be established using the weighted sum of energy-
and contrast-differences to weight the ARISM model.

The remainder of this paper proceeds as follows: Section II
first reviews our previous related work. Section III introduces
the motivation of our approach and describes its framework in
detail. A comparison of ARISM with state-of-the-art metrics
using blur data sets obtained from four monoscopic image
databases (LIVE [40], TID2008 [41], CSIQ [42], and TID2013
[43]) is given in Section IV. In Section V, the proposed model
is extended to a stereoscopic sharpness measure and is verified
on LIVE3D-I [44] and LIVE3D-II [45] databases. We finally
conclude this paper in Section VI.

1RR IQA works under the situation that the partial original image or some
extracted features are available as auxiliary information for quality evaluation.

II. RELATED WORK

In a recent work [22], the simple yet valid NFEQM method
was proposed based on the concept of the free energy theory,
which was lately revealed in [23] and it succeeds in explaining
and unifying several existing brain theories in biological and
physical sciences about human action, perception and learning.
The fundamental assumption of the free energy principle
is that the cognitive process is controlled by an internal
generative model in the brain, similar to the Bayesian brain
hypothesis [46]. Depending on this model, the brain is able
to use a constructive way to actively infer predictions of the
meaningful information from input visual signals and reduce
the residual uncertainty.

The aforesaid constructive manner can be approximated by
a probabilistic model, which can be separated into a likelihood
term and a prior term. For a given scene, the human visual
system can deduce its posterior possibilities by inverting the
likelihood term. It is natural that there always exists a gap
between the real external scene and the brain’s prediction,
for the reason that the internal generative model cannot be
universal everywhere. We believe that this gap between the
external input signal and its generative-model-explainable part
is highly connected to the quality of visual sensations, and is
applicable to the measurement of image sharpness.

Specifically, we postulate that the internal generative model
g is parametric for visual sensation, and the perceived scenes
can be explained by adjusting the parameter vector φφφ. Given
a visual signal s, its “surprise” (measured by entropy) can be
obtained by integrating the joint distribution p(s,φφφ|g) over the
space of model parameters φφφ

− log p(s|g) = − log

∫
p(s,φφφ|g)dφφφ. (1)

We bring an auxiliary term q(φφφ|s) into both the denominator
and numerator in Eq. (1) and derive:

− log p(s|g) = − log

∫
q(φφφ|s)p(s,φφφ|g)

q(φφφ|s)
dφφφ. (2)

Here q(φφφ|s) is an auxiliary posterior distribution of the model
parameters given the input image signal s. It can be thought of
as an approximate posterior to the true posterior of the model
parameters p(φφφ|s, g) given by the brain. When perceiving the
image signal s or when adjusting the parameters φφφ in q(φφφ|s) to
search for the optimal explanation of s, the brain will minimize
the discrepancy between the approximate posterior q(φφφ|s) and
the true posterior p(φφφ|s, g) .

Next, the dependence on the model g will be dropped for
simplicity. Using the Jensen’s inequality, we can easily get the
following relationship from Eq. (2):

− log p(s) ≤ −
∫
q(φφφ|s) log

p(s,φφφ)

q(φφφ|s)
dφφφ. (3)

The right hand side of Eq. (3) is the upper bound by a term
called “free energy”, which is defined as

f(φφφ) = −
∫
q(φφφ|s) log

p(s,φφφ)

q(φφφ|s)
dφφφ. (4)

The free energy measures the discrepancy between the input
visual signal and its best explanation given by the internal
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(a) Input (b) GT (c) S3 (d) FISHbb (e) NFEQM

Fig. 1: Comparison of local sharpness maps of ground truth, S3,
FISHbb and NFEQM using representative images in [17].

generative model, and thus it can be considered as a natural
proxy for psychovisual quality of images. This motivates the
use of free energy for the design of NFEQM in the image
sharpness / blurriness measure:

NFEQM(s) = f(φ̂φφ) with φ̂φφ = arg min
φφφ
f(φφφ|g, s). (5)

The linear autoregressive (AR) model is used for approxi-
mating g, because this model is easy to construct and has a
good ability to characterize a wide range of natural scenes by
varying its parameters [47]-[49]. For an input visual signal s,
we define the AR model as

sn = Vt(sn)υυυ + εn (6)

where sn is a pixel in question. Vt(sn) is a vector of t nearest
neighbors of sn. υυυ = (υ1, υ2, ..., υt)

T is a vector of AR model
coefficients. The superscript “T ” means transpose. εn is the
error term. To determine υυυ, the linear system can be written
in matrix form as

υ̂υυ = arg min
υυυ
‖s− Vυυυ‖2 (7)

where s = (s1, s2, ..., st)
T and V(i, :) = Vt(si). This linear

system was solved with the least square method, leading to
υ̂υυ = (VTV)−1VTV. Next, we estimated ŝ to be

ŝn = Vt(sn) υ̂υυ. (8)

Referring to the analysis in [22], the process of free-energy
minimization is closely related to predictive coding, and it
can be finally approximated as the entropy of the prediction
residuals between s and ŝ for a given AR model of fixed orders.
Thus, the free energy of the input image signal is quantified
by

NFEQM(s) = −
∑

i
pi(sM) log pi(sM) (9)

where sM is the prediction error between the input visual signal
and its predicted version. pi(sM) is the probability density of
grayscale i in sM.

III. IMAGE SHARPNESS MEASURE

A. Motivation

The successfulness of NFEQM implies the effectiveness of
AR model in measuring image sharpness. Fig. 1 exhibits the
maps from ground truth and three sharpness metrics on three

(a) NFEQM

(b) ARISM

Fig. 2: Comparison of NFEQM and ARISM frameworks.

images “dragon”, “monkey”, and “peak” [17]. As compared to
S3 and FISHbb, NFEQM shows fairly good estimation toward
the ground truth maps. We can summary the whole process of
NFEQM to be a three-step model: AR parameter estimation,
image prediction by free energy, and sharpness measure in
entropy, as presented in Fig. 2 (a).

However, it can be found that the core of free energy
is that the parameters φφφ in q(φφφ|s) is adjusted to search
for the optimal explanation of the visual signal s, thus to
minimize the discrepancy of the approximate posterior q(φφφ|s)
and the true posterior p(φφφ|s, g). So it is reasonable that the
distribution of the parameters φφφ is more closely related to the
working of the brain’s perception to image sharpness. Here the
distribution of q(φφφ|s) is represented by that of the estimated
AR parameters, which exhibits a center-peaked appearance.
In order to illustrate this, an image and its auxiliary posterior
distribution of the model parameters q(φφφ|s) computed using
the first-order AR model are shown in Fig. 3.

Accordingly, we consider the use of AR model parameters,
which were shown to invariant to object transformations (e.g.
translation, rotation and scaling) and widely applied in the
literature [50]-[51], and thus concentrate on the analysis and
adoption of AR coefficients in the proposed ARISM method.
This is a distinguished difference between our technique and
the previous NFEQM metric, which improves the performance
in the sharpness measure to a sizable margin. We display this
primary framework in Fig. 2 (b), which is composed of AR
parameters estimation, local sharpness computation, percentile
pooling stage and extension to color metric.

From another point of view, after the estimation of AR
coefficients, the aforementioned two models utilize different
dimensionality reduction strategies. NFEQM exploits pixels
in the input and predicted images for blurriness measure, and
thereby works in the spatial domain. In comparison, ARISM
estimates the sharpness in the parameter space by analyzing
the difference of locally estimated AR parameters in a point-
wise way, which will be explicitly explained later.

Another distinguishment between our model and existing
related methods (including NFEQM) is that ARISM considers
the inevitable influence of color information on the sharpness
assessment. Most approaches operate on the gray luminance
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(a) (b)

Fig. 3: Illustration of the posterior distribution of the model param-
eters q(φφφ|s) by: (a) a natural image; (b) the associated distribution
of q(φφφ|s) computed using the first-order AR model.

image that is converted from the input color image signal s
by the “rgb2gray” transform matrix:

sgray = [ r g b ] [ cr cg cb ]T (10)

where r, g and b indicate the vectors in s. cr, cg and cb are
fixed as 0.299, 0.587 and 0.114. Only using gray information
is not reasonable, because some edges might be removed by
this transformation, which may result in the disappearance of
sharpness in the color image after the above transformation.
Thus our technique exploits the simple and widely used YIQ
color space [52] for boosting the performance.

B. AR Parameters Estimation

As mentioned in the introduction, higher resemblance of
AR parameters corresponding to one particular pixel indicates
poorer sharpness of that location. The first step is to estimate
the AR model coefficients for each pixel. Instead of using
the AR parameters estimation in NFEQM, we employ another
easier way to address this problem, which has been efficiently
and effectively used for dimensionality reduction [53]. In our
ARISM, an 8-th order AR model is trained for each image
pixel and its 8-connected neighborhood to derive the optimal
AR parameters.

C. Local Sharpness Computation

It is easy to imagine that eight AR model parameters of a
pixel will be very close to each other when this pixel is in
a comparatively smooth region, and on the other hand, these
parameters tend to be obviously distinct when the current pixel
belongs to a sharp zone. We pick two classical measures for
this. The first one is defined as the difference between the
maximum and minimum values of those AR parameters at the
location of (i, j) in the input image S2:

Ei,j = |Wmax −Wmin|n (11)

where Wmax and Wmin are computed from the AR parameters
as follows:

Wmax = max
(s,t)∈Ωi,j

(Ws,t)

Wmin = min
(s,t)∈Ωi,j

(Ws,t).

2For convenience, we use the image matrix S to represent the image signal
s in the following pages. Similarly, the images or maps will be written in the
form of matrixes.

Fig. 4: The selected ten high-quality images from the CUHKPQ
image database [55].

where the location pair (s, t) satisfies

Ωi,j={(s, t) | s∈ [i−1, i+1], t∈ [j−1, j+1], (s, t) 6=(i, j)}.

The max and min operators are independently used to mark
the maximum and minimum values from the locally estimated
parameters at each pixel location. The exponent n is used to
adjust the significance of the difference Ei,j . In this stage,
we select n = 2 to measure the energy difference (i.e. the
mean-squared error) across the parameters.

Inspired by the definition of the famous Michelson contrast
[54], we define a second contrast-based measure at the location
of Si,j :

Ci,j =
(Wmax −Wmin)2

W 2
max +W 2

min

. (12)

It has been found in [18] that the block-based pooling is an
effective way for sharpness evaluation. We further modify E
and C into a block-based version:

Ebbu,v =
1

M

√ ∑
(i,j)∈Φu,v

Ei,j (13)

Cbbu,v =
1

M

√ ∑
(i,j)∈Φu,v

Ci,j (14)

where M is the length of the selected square patches. Each of
chosen patches Φu,v is designated as

Φu,v={(i, j) | i∈ [(u−1)M+1, uM ], j∈ [(v−1)M+1, vM ]}

where 1≤ u≤ bH/Mc, 1≤ v≤ bW/Mc, and W and H are
the width and height of the image S, respectively.

It is worthy to stress that using the max and min operators
before computing the energy- and contrast-differences is a
simple tactic to reduce the dimensionality of AR parameters.
Other complicated strategies, such as variance and entropy, are
likely to be more effective.

D. Percentile Pooling Stage
In the final, a percentile pooling is taken to calculate the

sharpness score. Percentile pooling methods have succeeded
in improving the performance accuracy, such as [3] and [17].
As a result, we average the largest Qk% values in the k (k ∈
{E,C,Ebb, Cbb}) map to compute the sharpness score ρk. We
then derive the overall quality index with a linear weighted
pooling of those four scores:

ρ =
∑
k∈Ψ

Θk · ρk (15)
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where Ψ = {E,C,Ebb, Cbb}. Θk are positive constants used
to adjust the relative importance of each component.

E. Determination of Parameters

To determine those parameters applied in ARISM, we first
selected ten high-quality images, which are of a broad range
of scenes (e.g. animals and architectures) from the CUHKPQ
database [55] as shown in Fig. 4, and then created 150 blurred
images using Gaussian kernels with standard deviation σG
(from 1 to 5) with Matlab fspecial and imfilter commands.
Each of R, G and B image planes was blurred with the same
kernel. The CUHKPQ database was chosen for validating the
generality and database-independency of our technique, since
existing IQA databases [40]-[43] will be used for performance
test and comparison in later experiments.

Next, we utilized the visual information fidelity (VIF) [2],
which is quantified to be the ratio of the mutual information
between the original and distorted images to the information
content of the original one itself, owing to its superior perfor-
mance in the image sharpness measure, to assess the aforesaid
150 images, and then use those objective quality scores to
optimize the parameters adopted in ARISM. Spearman rank-
order correlation coefficient (SRCC), one of the most popular
performance metrics and has been used to find the suitable
parameters in quite a few IQA approaches such as [9]-[10], is
employed for optimization in this implementation3. As given
in Fig. 5, we can see from the scatter plot of VIF versus our
ARISM model that the sample points are quite clustered to
the red fitted curve, with the SRCC value higher than 0.97 (1
is the best).

F. Extension to Color Metric

We further take chrominance information into consideration,
as used in the literature [3]-[4]. Before the calculation of AR
parameters, the simple and widely used YIQ color space [52]
is used to transfer an input RGB color image: Y

I
Q

 =

 0.299 0.587 0.114
0.596 − 0.274 − 0.322
0.211 − 0.523 0.312

 R
G
B

 (16)

where Y conveys the luminance information, and I and Q
contain the chrominance information. We thereby propose the
ARISMc by extending ARISM to the YIQ space:

ρc =
∑

l∈{Y,I,Q}

∆l · ρl (17)

where ∆l are fixed positive numbers for altering the relative
importance of each component, which are optimized with the
same method in Section III-E.

3Our ARISM model only applies E,C, and Cbb maps (i.e. ΘEbb = 0)
since the use of Ebb map cannot introduce the performance improvement.
The Matlab code of the proposed sharpness metric will be available online at
http://sites.google.com/site/guke198701/home.

Fig. 5: The scatter plot of VIF versus ARISM on the 150 blurred
images. The red curve is fitted with the logistic function of Eq. (18).

IV. EXPERIMENTAL RESULT

In this section we first provide an example of the application
of our algorithm using an original natural image “monument”
in Fig. 6. We first chose different Gaussian kernels G(x, y, σ)
with eleven standard deviations σ from 0.5 to 1.5 with an
interval of 0.1. Then, eleven blurred images were generated
by convolving the original version with each of the selected
Gaussian kernels above. Based on the proposed ARISM, we
evaluated the sharpness of these eleven blurred images and
obtained their quality scores. The sample points of eleven
standard deviations versus their corresponding ARISM scores
are shown to be very convergent to the red fitted curve in the
rightmost scatter plot.

We then calculate and compare the performance of our
ARISM model with a large set of relevant methods on blur
data sets. First, we used blur image subsets from four large-
size LIVE, TID2008, CSIQ and TID2013 databases as testing
beds. The most popular LIVE database [40] was developed at
the University of Texas at Austin, including 779 lossy images
created from 29 pristine ones by corrupting them with five
types of distortions. We adopted 145 blurred images and their
realigned DMOS (the differential version of MOS) values
because realigned DMOSs are more reasonable than original
ones [56]. The TID2008 database [41] was provided with a
joint international effort between Finland, Italy and Ukraine,
which consists of 1,700 images. These images were produced
by corrupting 25 original versions with 17 distortion types at
4 different levels. A total of 100 blurred images were applied
here. The CSIQ database [42] was released at Oklahoma State
University, where 866 images were derived from 30 original
counterparts. Six distortion types were considered in CSIQ:
white noise, JPEG, JP2K, pink noise, blur, and global contrast
decrements. We picked 150 blurred images from this database
for testing. The TID2013 [43] contains totally 3,000 images,
created by corrupting 25 original ones with 24 categories of
distortions at 5 distinct levels. A number of 125 blurred images
were used in this study.

Second, we choose fifteen classical FR IQA and state-of-
the-art NR / blind algorithms for comparison. They are: 1)
Three FR IQA models, peak signal-to-noise ratio (PSNR) that
computes the signal energy preservation, structural similarity
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Fig. 6: A simple example of our ARISM model for an original image “monument”. We first chose different Gaussian kernels G(x, y, σ) with
eleven standard deviations σ from 0.5 to 1.5 with an interval of 0.1. By convolving the original image with each of the selected Gaussian
kernels above, eleven blurred images were generated. We then estimated the sharpness of these eleven blurred images with our sharpness
measure, so as to acquire eleven quality scores. Finally, the rightmost scatter plot shows the well correlation of the eleven standard deviations
versus their corresponding ARISM scores.

index (SSIM) that compares luminance, contrast and structural
similarities [1], and VIF [2]; 2) Six NR IQA models, NFEQM
[22], DIIVINE [24], BLIINDS-II [25], BRISQUE [26], NFS-
DM [29] and NFERM [30]; 3) Six blind sharpness / blurriness
estimators, JNB [15], CPBD [16], S3 [17], FISH [18], FISHbb
[18], and LPC-SI [21]. Notice that the second type of general-
purpose NR IQA models are trained on the LIVE database via
the SVM, not only for the sharpness assessment.

Third, we refer to the suggestion given by the video quality
experts group (VQEG) [57], and adopt a nonlinear mapping
of the prediction results x to the subjective scores using the
four-parameter logistic function:

f(x) =
ξ1 − ξ2

1 + exp(−x−ξ3ξ4
)

+ ξ2 (18)

where x and f(x) stand for the input score and the mapped
score. The free parameters ξj (j = 1, 2, 3, 4) are determined
during the curve fitting process. Next, four commonly used
measures are employed to quantify the performance of those
above metrics: 1) SRCC, which computes the monotonicity
by ignoring the relative distance between the data:

SRCC = 1−
6
∑F
i=1 d

2
i

F (F 2 − 1)
(19)

where di is the difference between the i-th image’s ranks
in subjective and objective evaluations, and F represents the
number of images in the testing database; 2) Kendall’s rank-
order correlation coefficient (KRCC), another monotonicity
metric used to measure the association between the inputs:

KRCC =
Fc − Fd

1
2F (F − 1)

(20)

where Fc and Fd separately indicate the numbers of concor-
dant and discordant pairs in the testing data set; 3) Pearson
linear correlation coefficient (PLCC), meaning the prediction
accuracy:

PLCC =

∑
i f̃i · õi√∑
i f̃

2
i ·

∑
i õ

2
i

(21)

where õi = oi− ō with oi and ō being the subjective scores of
the i-th image and the mean of all oi, and f̃i = fi− f̄ with fi
and f̄ being the converted objective scores after the nonlinear
regression and the mean of all fi; 4) root-mean-squared error
(RMSE), quantifying the difference between fi and oi:

RMSE =

√
1

F

∑
i
(fi − oi)2. (22)

A good measure is expected to attain high values in SRCC,
KRCC and PLCC, as well as low values in RMSE. In entire
experiments, we merely include blurred images (i.e. original
images are excluded).

Table I tabulates the performance measures on those four
databases. For each evaluation criterion, we emphasize the top
two performed NR/blind metrics with boldface. To provide a
straightforward and overall comparison, Table I also computes
the average SRCC, KRCC, PLCC and RMSE4 results for
each objective measure over all four databases. Two averages
are used: 1) the direct average; 2) the database size-weighted
average that computes the mean values based on the size of
each data set (145 for LIVE, 100 for TID2008, 150 for CSIQ,
and 125 for TID2013). The results of DIIVINE, BLIINDS-
II, BRISQUE and NFSDM are not included for the LIVE
database because all of them use that database for training.
As a consequence, their average results are calculated over
the other three databases only.

We can observe that the proposed ARISM model correlates
highly with human visual perception to image sharpness, and
it is remarkably superior to those testing NR / blind techniques
on average. In general, FR IQA metrics are considered hardly
matchable with NR / blind approaches owing to the existence
of original references. Although this comparison is unfair to
ARISM, our metric is still better than the FR PSNR, while is
a little inferior to the FR SSIM on average.

4RMSE is a measure highly related to the range of subjective ratings. Those
four databases have different ranges, so the comparison on average should be
conducted using all four databases and we do not include the RMSE values
of the four training-based NR IQA metrics.
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TABLE I: Performance evaluations on four databases and two averages. We bold the top two performed NR/blind metrics.

LIVE Blur Database (145 Images) [40]
Metrics SRCC KRCC PLCC RMSE
PSNR 0.7823 0.5847 0.7835 11.478

SSIM [1] 0.8944 0.7136 0.8743 8.9643
VIF [2] 0.9728 0.8594 0.9743 4.1572

NFEQM [22] 0.8845 0.7052 0.8921 8.3448
DIIVINE [24] training images

BLIINDS-II [25] training images
BRISQUE [26] training images
NFSDM [29] training images
NFERM [30] training images

JNB [15] 0.7871 0.6069 0.8160 10.677
CPBD [16] 0.9186 0.7634 0.8953 8.2263

S3 [17] 0.9403 0.7893 0.9503 5.7494
FISH [18] 0.8808 0.7034 0.9043 7.8844

FISHbb [18] 0.9381 0.7898 0.9440 6.0954
LPC-SI [21] 0.9389 0.7785 0.9181 7.3217

ARISM (Pro.) 0.9511 0.8042 0.9560 5.4176
ARISMc (Pro.) 0.9561 0.8161 0.9590 5.2359

TID2008 Blur Database (100 Images) [41]
Metrics SRCC KRCC PLCC RMSE
PSNR 0.8697 0.7332 0.8729 0.5726

SSIM [1] 0.9386 0.7862 0.9338 0.4200
VIF [2] 0.9540 0.8186 0.9402 0.3998

NFEQM [22] 0.7124 0.4716 0.7179 0.8169
DIIVINE [24] 0.7821 0.6389 0.7375 0.7925

BLIINDS-II [25] 0.8205 0.6245 0.8260 0.6614
BRISQUE [26] 0.7990 0.6233 0.8043 0.6973
NFSDM [29] 0.5534 0.3904 0.5808 0.9552
NFERM [30] 0.8075 0.6002 0.8050 0.6962

JNB [15] 0.6667 0.4951 0.6931 0.8459
CPBD [16] 0.8414 0.6301 0.8237 0.6654

S3 [17] 0.8328 0.6184 0.8482 0.6216
FISH [18] 0.7828 0.5343 0.8079 0.6915

FISHbb [18] 0.8378 0.6221 0.8519 0.6145
LPC-SI [21] 0.8561 0.6548 0.8574 0.6040

ARISM (Pro.) 0.8505 0.6362 0.8428 0.6317
ARISMc (Pro.) 0.8681 0.6750 0.8544 0.6098

CSIQ Blur Database (150 Images) [42]
Metrics SRCC KRCC PLCC RMSE
PSNR 0.9291 0.7543 0.9252 0.1087

SSIM [1] 0.9245 0.7665 0.9005 0.1246
VIF [2] 0.9745 0.8661 0.9737 0.0653

NFEQM [22] 0.8939 0.7250 0.9158 0.1151
DIIVINE [24] 0.8716 0.6886 0.8979 0.1262

BLIINDS-II [25] 0.8766 0.6788 0.8930 0.1290
BRISQUE [26] 0.9025 0.7350 0.9274 0.1072
NFSDM [29] 0.7398 0.5453 0.7832 0.1782
NFERM [30] 0.8964 0.7284 0.9218 0.1111

JNB [15] 0.7624 0.5976 0.8061 0.1696
CPBD [16] 0.8853 0.7090 0.8822 0.1349

S3 [17] 0.8681 0.6868 0.8833 0.1343
FISH [18] 0.8941 0.7323 0.9232 0.1102

FISHbb [18] 0.9177 0.7606 0.9434 0.0950
LPC-SI [21] 0.9071 0.7205 0.9159 0.1151

ARISM (Pro.) 0.9255 0.7581 0.9456 0.0933
ARISMc (Pro.) 0.9314 0.7695 0.9481 0.0911

TID2013 Blur Database (125 Images) [43]
Metrics SRCC KRCC PLCC RMSE
PSNR 0.9149 0.7884 0.9137 0.5071

SSIM [1] 0.9629 0.8385 0.9577 0.3592
VIF [2] 0.9650 0.8370 0.9530 0.3782

NFEQM [22] 0.7771 0.5347 0.8005 0.7479
DIIVINE [24] 0.8344 0.6180 0.8472 0.6629

BLIINDS-II [25] 0.8367 0.6519 0.8490 0.6593
BRISQUE [26] 0.8143 0.6359 0.8248 0.7057
NFSDM [29] 0.6155 0.4440 0.6538 0.9442
NFERM [30] 0.8498 0.6555 0.8493 0.6588

JNB [15] 0.6902 0.5137 0.7114 0.8770
CPBD [16] 0.8515 0.6462 0.8553 0.6466

S3 [17] 0.8046 0.5871 0.8432 0.6708
FISH [18] 0.8024 0.5672 0.8327 0.6910

FISHbb [18] 0.8584 0.6462 0.8756 0.6027
LPC-SI [21] 0.8888 0.6839 0.8917 0.5647

ARISM (Pro.) 0.8980 0.7149 0.8953 0.5560
ARISMc (Pro.) 0.9015 0.7174 0.8979 0.5493

Direct Average
Metrics SRCC KRCC PLCC RMSE
PSNR 0.8740 0.7152 0.8738 3.1667

SSIM [1] 0.9301 0.7762 0.9166 2.4670
VIF [2] 0.9666 0.8452 0.9603 1.2501

NFEQM [22] 0.8170 0.6091 0.8316 2.5062
DIIVINE [24] 0.8294 0.6485 0.8275 -

BLIINDS-II [25] 0.8446 0.6517 0.8560 -
BRISQUE [26] 0.8386 0.6647 0.8521 -
NFSDM [29] 0.6362 0.4599 0.6726 -
NFERM [30] 0.8512 0.6614 0.8587 -

JNB [15] 0.7266 0.5533 0.7567 3.1423
CPBD [16] 0.8742 0.6872 0.8641 2.4183

S3 [17] 0.8614 0.6704 0.8813 1.7940
FISH [18] 0.8400 0.6343 0.8670 2.3443

FISHbb [18] 0.8880 0.7047 0.9037 1.8519
LPC-SI [21] 0.8977 0.7048 0.8958 2.1514

ARISM (Pro.) 0.9063 0.7330 0.9099 1.6746
ARISMc (Pro.) 0.9143 0.7445 0.9148 1.6215

Database Size-Weighted Average
Metrics SRCC KRCC PLCC RMSE
PSNR 0.8733 0.7112 0.8729 3.4641

SSIM [1] 0.9281 0.7729 0.9133 2.7027
VIF [2] 0.9678 0.8481 0.9624 1.3459

NFEQM [22] 0.8283 0.6250 0.8434 2.6970
DIIVINE [24] 0.8354 0.6518 0.8382 -

BLIINDS-II [25] 0.8483 0.6554 0.8605 -
BRISQUE [26] 0.8455 0.6722 0.8603 -
NFSDM [29] 0.6487 0.4703 0.6861 -
NFERM [30] 0.8572 0.6699 0.8665 -

JNB [15] 0.7336 0.5603 0.7644 3.3996
CPBD [16] 0.8780 0.6939 0.8681 2.6162

S3 [17] 0.8662 0.6783 0.8856 1.9227
FISH [18] 0.8469 0.6465 0.8740 2.5294

FISHbb [18] 0.8938 0.7146 0.9097 1.9901
LPC-SI [21] 0.9018 0.7117 0.8994 2.3267

ARISM (Pro.) 0.9116 0.7407 0.9166 1.7927
ARISMc (Pro.) 0.9189 0.7518 0.9210 1.7356

Moreover, we should mention that the average performance
improvement (using SRCC) of the proposed ARISM is larger
than 1.9% relative to the second best LPC-SI algorithm. As
compared to the previous NFEQM method, our technique has
achieved noticeable performance gain, about 8.1% on LIVE,
21.9% on TID2008, 4.2% on CSIQ, 16.0% on TID2013,
11.9% on the direct average, and 10.9% on the database size-
weighted average. This also demonstrates the superiority of the
proposed scheme used in ARISM over that used in NFEQM
for the sharpness measure.

To confirm the proposed ARISM / ARISMc, we also test
how well it predicts FR VIF, which is of substantially high
accuracy in assessing blurred images. We in Fig. 7 illustrate
the scatter plots acquired using all four data sets, where each
sample point indicates one test image and the vertical and
horizontal axes correspond to FR VIF and ARISM / ARISMc,
respectively. The points lie on the black diagonal dash line for
the perfect prediction. To provide a quantitative comparison,
Table II lists SRCC and PLCC values between VIF and our
metric on each data set. It can be viewed that the points are
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TABLE II: SRCC and PLCC comparison between FR VIF and the proposed ARISM / ARISMc on four blur subsets.

ARISM / VIF LIVE TID2008 CSIQ TID2013
SRCC 0.9753 0.8911 0.9512 0.9318
PLCC 0.9724 0.9267 0.9573 0.9529

ARISMc / VIF LIVE TID2008 CSIQ TID2013
SRCC 0.9743 0.9005 0.9557 0.9364
PLCC 0.9714 0.9338 0.9606 0.9571

TABLE III: Performance measures of our ARISM, ARISM-S, ARISMc, and ARISMc-S models on four blur subsets.

Models LIVE TID2008 CSIQ TID2013 Direct Average Weighted Average
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

ARISM 0.9511 0.9560 0.8505 0.8428 0.9255 0.9456 0.8980 0.8953 0.9063 0.9099 0.9116 0.9166
ARISM-S 0.9522 0.9570 0.8519 0.8419 0.9257 0.9460 0.8995 0.8946 0.9073 0.9099 0.9126 0.9167
ARISMc 0.9561 0.9590 0.8681 0.8544 0.9314 0.9481 0.9015 0.8979 0.9143 0.9148 0.9189 0.9210

ARISMc-S 0.9576 0.9606 0.8722 0.8561 0.9306 0.9477 0.9038 0.8989 0.9161 0.9158 0.9205 0.9219

LIVE Blur Database TID2008 Blur Database CSIQ Blur Database TID2013 Blur Database

Fig. 7: Scatter plots of FR VIF versus our ARISM / ARISMc on LIVE, TID2008, CSIQ and TID2013 blur subsets.

scattered fairly close to the black diagonal lines in Fig. 7 and
correlation performance results are almost above 0.9, meaning
the good prediction performance of our technique. It should
be noted that high correlation between the proposed model
and FR VIF or subjective opinion scores strongly suggests the
effectiveness of our hypothesis that image blurring increases
the resemblance of locally estimated AR parameters.

We further notice that using max and min operators and
two classical energy and contrast measures, or in other words
a simple dimensionality reduction method, is just an easy and
empirical tactic to analyze the AR parameters. It is obvious
that other measures (e.g. variance and entropy) or machine
learning-based technologies (e.g. principal component analysis
and popular deep learning network) might be of more superior
performance in the image sharpness estimation.

In addition, we also employ the DMOSs of blurry images
in the LIVE database to optimize the parameters used in the
proposed method, dubbed as ARISM-S and ARISMc-S, since
the objective quality metric leans to the mean human scores.
The performance results of the proposed ARISM, ARISM-S,
ARISMc, and ARISMc-S models are compared using LIVE,
TID2008, CSIQ, TID2013 databases and the two means, as
reported in Table III. In contrast to ARISM and ARISMc that
are optimized using the high-accuracy VIF metric, ARISM-S
and ARISMc-S built upon subjective scores perform better on
most of testing databases and two averages.

Statistical significance analysis based on the variance-based
hypothesis testing shows additional information regarding the
relative performance of different quality algorithms [56]. The
hypothesis behind such analysis is that the residual difference
between the subjective score and its objective prediction is
Gaussian distributed. In reality, this assumption is not always
met perfectly, whereas is somewhat reasonable because the
Central Limit Theorem comes into play and the distribution of
the residual difference approximates the Gaussian distribution
with the large number of sample points. For a given image
database, the F-test is applied to compare the variances of
two sets of prediction residuals by two objective methods, in
order to determine whether the two sample sets are of the
same distribution. As such, we can make a statistically sound
judgment regarding superiority or inferiority of one objective
method against another. Results of statistical significance are
listed in Table IV. A symbol “0” denotes that the two objective
methods are statistically indistinguishable, “+1” denotes our
method is statistically better than that of the column, and “-
1” denotes that our method is statistically worse than that
of the column. A symbol “-” denotes the unfeasible analysis
since learning-based DIIVINE, BLIINDS-II, BRISQUE and
NFSDM are trained on LIVE. It is found that our model is
statistically indistinguishable from S3 for LIVE and TID2008,
from FISHbb for TID2008, from LPC-SI for TID2008 and
TID2013, and better than all other blind algorithms.
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TABLE IV: Statistical significance comparison of ARISM / ARISMc / ARISM-3 and testing models with F-test.

Algorithms ARISM ARISMc ARISM-3
LIVE TID2008 CSIQ TID2013 LIVE TID2008 CSIQ TID2013 LIVE TID2008 CSIQ TID2013

NFEQM [22] +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
DIIVINE [24] - +1 +1 +1 - +1 +1 +1 - +1 +1 +1

BLIINDS-II [25] - +1 +1 +1 - +1 +1 +1 - +1 +1 +1
BRISQUE [26] - +1 +1 +1 - +1 +1 +1 - +1 +1 +1
NFSDM [29] - +1 +1 +1 - +1 +1 +1 - +1 +1 +1
NFERM [30] - +1 +1 +1 - +1 +1 +1 - +1 +1 +1

JNB [15] +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
CPBD [16] +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

S3 [17] 0 0 +1 +1 0 0 +1 +1 0 0 +1 +1
FISH [18] +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

FISHbb [18] +1 0 +1 +1 +1 0 +1 +1 0 0 +1 +1
LPC-SI [21] +1 0 +1 0 +1 0 +1 0 +1 0 +1 0

TABLE V: Performance and time comparison of ARISM-si as well as LPC-SI and S3 approaches.

Algorithm ARISM-1 ARISM-2 ARISM-3 ARISM-4 ARISM-5 S3 LPC-SI
SRCC 0.9115 0.9084 0.9028 0.8954 0.8902 0.8662 0.9018
PLCC 0.9158 0.9138 0.9045 0.8957 0.8922 0.8856 0.8994

Time (second / image) 6.1173 1.5490 0.7045 0.3993 0.2615 9.1518 0.9780

Fig. 8: Plots of performance and computational time (second / image) of our ARISM-si and LPC-SI approaches.

Furthermore, we compare the effectiveness and efficiency
with the top two blind sharpness metrics (LPC-SI and S3).
Clearly, it requires much computational cost in the estimation
of AR parameters, and thus the proposed ARISM model needs
a great amount of time5 that is the average value using 100
blurred images of the same size 512×384 in the TID2008
database with a computer of Intel Core i7 CPU at 3.40 GHz,
as provided in Table V. But we notice that the neighboring
AR coefficients are highly similar, and hence we choose the
sampling method for computational time reduction. That is to
say, the AR model parameters are evaluated once every a few
pixels in both horizontal and vertical directions. In this way,
the computational quantity can be reduced to about 1

(si+1)2 ,
where si means the value of the sampling interval. Here we
calculate the database size-weighted average performance on
all four databases (using SRCC, PLCC) and the computational
cost of five ARISM-si (si = 1, 2, 3, 4, 5), and report those
results in Table V. A better metric is expected to take less time.
It can be readily viewed that the high efficiency is attained
via a bit of loss in the prediction accuracy. Therefore we can
flexibly select a proper ARISM-si model for the effectiveness-
or efficiency-dominant environment.

5Due to the limited performance gain yet much extra computational load of
the color information, we hereinafter do not consider the use of color space.

Apart from the self-comparison, we find a good compromise
(ARISM-3) between effectiveness and efficiency, in contrast to
the top two performed LPC-SI and S3 metrics, whose results
are reported in Table V. Because the ARISM-3 is an effective
and efficient metric, we compute the F-test of ARISM-3 with
other NR / blind algorithms, as tabulated in Table IV. Results
tell that ARISM-3 is statistically indistinguishable from S3 and
FISHbb for LIVE and TID2008, from LPC-SI for TID2008 and
TID2013, and superior to all other models for all databases.
For a clear show, Fig. 8 exhibits two plots of performance
and computational time of those five ARISM-si models and
the LPC-SI metric.

Finally, we show the scatter plots of MOS / DMOS versus
objective quality predictions of representative FR PSNR, NR /
blind NFEQM, S3, and the proposed ARISM, ARISMc metrics
(after the nonlinear mapping) on all four databases in Fig. 9.
Our technique generally provides reasonable quality measures,
where the sample points tend to be clustered closer to the black
diagonal lines (meaning perfect prediction) than other testing
methods under comparison.

V. EXTENSION TO SHARPNESS ASSESSMENT OF
STEREOSCOPIC IMAGES

The 3D imaging technology is nowadays greatly important,
because the number of digital 3D pictures and movies for



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, XXXX XXXX 10

LIVE Blur Database TID2008 Blur Database CSIQ Blur Database TID2013 Blur Database

Fig. 9: Scatter plots of MOS / DMOS versus FR PSNR, NR / blind NFEQM and S3, as well as our ARISM and ARISMc models (after
the nonlinear regression) on four blur image’s subsets from LIVE, TID2008, CSIQ and TID2013 databases.

human consumption has dramatically increased over the recent
years. Therefore, how to validly monitor, control and improve
the visual quality of stereoscopic images become an urgent
problem and thus accurate stereoscopic IQA methods are
highly desirable. One type of classical schemes is to integrate
the 2D IQA measures of the left- and right-views with /
without the quality of the disparity map to yield the final
quality prediction of the 3D image [32]-[36]. Using a similar
yet more reasonable and effective strategy, in this paper we
further extend the proposed model to the sharpness assessment
of stereoscopic images with a few small modifications.

Early researches presented somewhat conflict observations
and opinions concerning the effect of asymmetric distortions.
In [58], evidence shows that the quality of asymmetric blurred
images is heavily dominated by the higher-quality view. So the
key point is how to well fuse the quality scores of the left- and
right-eye images. Several existing studies on binocular rivalry
[37]-[39] tell that for simple ideal stimuli, a growing contrast
increases the predominance of one view against the other. In
general, the contrast of a visual stimulus having complicated
scenes increases with the difference of AR parameters, which
motivates a sound hypothesis that the level of view dominance
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TABLE VI: Comparison on LIVE3D-I and LIVE3D-II. The top two algorithms are highlighted by bold font.

Metrics Type LIVE3D-I Blur Subset [44] LIVE3D-II Blur Subset [45] Average
SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE

PSNR FR 0.902 0.916 5.820 0.852 0.928 5.194 0.877 0.922 5.507
SSIM [1] FR 0.879 0.918 5.752 0.836 0.842 7.518 0.858 0.880 6.635
You [34] FR 0.882 0.919 5.679 0.813 0.784 8.649 0.848 0.852 7.164

Hewage [33] RR 0.690 0.798 8.748 0.028 0.450 12.44 0.359 0.624 10.59
Akhter [32] NR 0.555 0.617 11.39 0.682 0.795 8.450 0.619 0.706 9.920

BRISQUE [26] NR 0.860 0.926 5.473 0.862 0.862 4.323 0.861 0.894 4.898
Chen [46] NR 0.878 0.917 5.898 0.900 0.941 4.725 0.889 0.929 5.312

SARISM (Pro.) NR 0.903 0.932 5.230 0.877 0.960 3.917 0.890 0.946 4.573

TABLE VII: Statistical significance comparison between our SARISM and testing stereoscopic IQA metrics.

SARISM PSNR SSIM [1] You [34] Hewage [33] Akhter [32] BRISQUE [26] Chen [46]
LIVE3D-I Database +1 +1 +1 +1 +1 0 +1
LIVE3D-II Database +1 +1 +1 +1 +1 +1 0

in binocular rivalry of 3D images is rising with the difference
of AR model coefficients in two views.

To specify, given an input blurry image pair SL and SR,
the energy- and contrast-based maps E and C as well as the
associated block-based versions Ebb and Cbb are computed by
using Eqs. (11)-(14). We can obtain their quality scores YL and
YR in the luminance component with the proposed percentile
pooling stage in Eq. (15). Notice that the higher values of E
and C, the larger difference of AR parameters. Based on the
assumption that the view dominance of stereoscopic images
improves with the difference of AR coefficients and thus with
the energy- and contrast-differences, a straightforward method
is to integrate E and C to compute the weights of the view
dominance as follows:

VYL
= MαY

YL,E
+MβY

YL,C
(23)

VYR
= MαY

YR,E
+MβY

YR,C
(24)

where MYL,E and MYL,C are the mean of E and C of the
left-eye image, while MYR,E and MYR,C are the mean of E
and C of the right-eye one; αY and βY are positive weights
for adjusting the relative importance of energy- and contrast-
measures. Then the 3D image quality score in the luminance
component can be expressed by

QY = VYL
· YL + VYR

· YR. (25)

Using Eqs. (16)-(17), we similarly compute the scores in two
chrominance components, and finally infer the overall quality
of the stereoscopic image to be

QS =
∑

l∈{Y,I,Q}

∆l ·Ql (26)

where ∆l are fixed positive weights. It needs to emphasize
that, except the newly introduced parameters αl and βl, other
parameters are the same with those used in our proposed 2D
image sharpness metric.

Two popular stereoscopic image databases (LIVE3D-I [44]
and LIVE3D-II [45]) are adopted in this work for the perfor-
mance measure. LIVE3D-I includes 20 reference stereoscopic
images and the associated 365 distorted stereoscopic pairs.
Five types of distortions, including JPEG, JPEG2000, blur,
noise and fastfading, are symmetrically exerted on the original

left- and right-views at different levels. LIVE3D-II consists
of 120 symmetrically distorted stereoscopic pairs and 240
asymmetrically pairs generated from 8 source pairs. The same
five distortion types are symmetrically and asymmetrically
applied to the reference left- and right-eye images at various
degradation levels. In this work we consider the blur image
sets in the aforesaid two databases. Three performance indices
(SRCC, PLCC and RMSE) are used to quantify the correlation
performance of the proposed SARISM model. As listed in
Table VI, we can observe from the results that our approach
has attained fairly high performance accuracy.

A comparison of our model with seven competitive quality
metrics, including FR PSNR, SSIM [1], You [34], RR Hewage
[33], and NR / blind Akhter [32], BRISQUE [26], Chen [45]
is given in Table VI. In the LIVE3D-I database which is com-
posed of symmetrically stereoscopic image pairs, our SARISM
has obtained the top performance, and this is also due to the
superiority of the proposed 2D image sharpness metric. In the
LIVE3D-II database consisting of asymmetrically stereoscopic
image pairs, there exist substantial differences across various
methods in the correlation performance with human opinions.
First, without access to the original 3D image, our blind
sharpness measure is superior to the four testing FR and RR-
IQA metrics that need the help of reference information for
predicting visual quality. Second, between the two training-
free NR algorithms, the proposed SARISM is remarkably
better than the Akhter model. Third, in comparison to the
two training-based BRISQUE and Chen methods, our metric
outperforms BRISQUE while is a litter inferior to Chen in the
measure of monotonicity but superior to it in the measure of
prediction accuracy. This phenomenon is possibly because the
Chen method has a complicated binocular rivalry model that
encompasses a SSIM-based stereo algorithm for estimating
disparity map and a set of multi-scale Gabor filters. In contrast,
our SARISM only uses some intermediate results as weights
to combine the sharpness measures of the left- and right-views
with basic matrix operations. The average performance indices
are also shown in Table VI, which confirms the effectiveness
of the proposed metric over all the tested algorithms.

The F-test is further applied to the statistical significance
comparison of the proposed SARISM and testing metrics, as
listed in Table VII. Although it is statistically equivalent to
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LIVE3D-I Blur Database LIVE3D-II Blur Database

Fig. 10: Scatter plots of DMOS versus FR PSNR, SSIM and the
proposed SARISM metrics (after the nonlinear regression) on blur
subsets from LIVE3D-I and LIVE3D-II databases.

BRISQUE on LIVE3D-I and to Chen on LIVE3D-II, overall,
the proposed method is statistically better than all approaches
considered. Fig. 10 further illustrates a visualized comparison
of the scatter plots between DMOS versus PSNR, SSIM and
our SARISM model on LIVE3D-I and LIVE3D-II databases.
The proposed technique generally presents reasonable quality
predictions, where the sample points tend to be clustered closer
to the black diagonal lines (meaning perfect prediction) as
compared to other metrics under comparison.

VI. CONCLUSION

In this paper, we have proposed a new simple yet effective
blind sharpness measure via parameter analysis of classical
autoregressive (AR) image model. Our method is established
upon the assumption that higher resemblance of the locally
estimated AR model coefficients means lower sharpness. We
further extend ARISM to the simple and widely used YIQ
color space, and thus introduce ARISMc taking into account
the color effect on the image sharpness assessment. Results
of experiments conducted on blur data sets from four large-
size monoscopic image databases have demonstrated that the
proposed ARISM and ARISMc enjoy superior performance
relative to mainstream NR IQA metrics, state-of-the-art blind
sharpness / blurriness evaluators, and FR quality evaluations.
We also extend the proposed model to the sharpness assess-
ment of stereoscope images with a few small modifications.
In contrast to related popular quality methods, our developed
stereoscopic sharpness measure performs effectively on two
recently released 3D image databases.

Furthermore, we want to highlight two points: 1) this paper
explores a new framework based on the free energy principle
and the AR model, introducing remarkable performance gain
with respective to the previous NFEQM metric; 2) we only
design a simple and empirical scheme via the analysis of AR
model parameters while other advanced technologies based on
machine learning will be researched in the future.
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